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Nonlinear Circuit Design Using the Modified
Harmonic Balance Algorithm

ROWAN GILMORE, MEMBER, IEEE

,Ostract —A modification to a harmonic balance algorithm allows the

nonlinear analysis of circuits driven by two nonharrnonically related input

frequencies. The algorithm was implemented on an IBM AT Personaf

Computer.

Three examples are presented to illustrate the analysis. The first is a

novel wide-band FET freqiiency doubler that achieves an average conver-

sion loss of 3.5 dB over the 8- 16-GHz output band. The second example

illustrates a technique used in the design of a C-band power amplifier in

which third-order internrodulation distortion was reduced by 8 dB with two

tones of 34 dBm each at the output. The final example illustrates the gain

suppression of a smaller tone in the presence of a larger one of slightly

different frequency in a limiting amplifier. Simulations agree with mea-

surements in which 2.5-dB gain suppression was observed in a 2-GHz FET

feedback amplifier driven into saturation.

I. INTRODUCTION

sOLID-STATE microwave components are all nonlin-

ear to some degree. In communication amplifiers, any

nonlinearity in the phase and amplitude of the voltage-

transfer characteristics must be minimized to preserve the

shape and spectral content of the signal. However, compo-

nents such as limiting amplifiers, oscillators, doublers, and

mixers rely on device nonlinearity for proper operation. In

all cases, complete circuit analysis of these components

requires a nonlinear device model and analytic means to

extract the effect of device–circuit interactions from the

model. This paper describes a tool to achieve this.

Characterization of a nonlinear device by a time-domain

model is usually appropriate because circuit models typi-

cally relate output parameters to input parameters in a

causal fashion (often through the device physics). How-

ever, a description of the linear circuit is most convenient

in the frequency domain. A frequency-domain description

of linear circuits is particularly advantageous at microwave

frequencies as transmission lines are simply and accurately

represented by phasor rotation in the complex plane, and

elements such as large-bias capacitors simply map a phasor

into a different magnitude and angle and pose little com-

putational burden. A description of elements such as these

in the time domain is not only difficult but would necessi-

tate very long integration times to reach steady state.

Finally, additional nodes and branches added to an exist-

ing N-port circuit do not change the size of the N by N

matrix needed to represent the circuit in the frequency

domain, whereas each addition represents an extra state-
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space equation that must be solved in the time-domain

description of the circuit.
A method which weds frequency-domain linear circuit

analysis to an arbitrary nonlinear device model repre-

sented in the time domain is the harmonic balance tech-

nique [1]. The purpose of this paper is to review and

modify the harmonic balance procedure to allow the study

of nonharmonically related inputs. Three examples will be

presented, The first example is a 8-16-GHz wide-band

frequency-doubler in which conversion gains of – 1 to – 6

dB were achieved over the octave bandwidth. The second

example is a linear amplifier in which the analytical tech-

nique demonstrated a way to reduce intermodulation dis-

tortion. A 6-W amplifier was built in which the third-order

intermodulation distortion products were 18 dB below two

signals of +34 dBm each at the output. This was an 8-dB

improvement over a similar amplifier without the lineariza-

tion technique. The final example illustrates gain suppres-

sion in limiting amplifiers, that is, the suppression of a

smaller signal in the presen~e of a larger signal of different

frequency at the output of an amplifier driven into satura-

tion. In all three examples, computer simulations are used

to design the nonlinear circuit and to predict device behav-

ior as a function of drive level. The results of supporting

measurements are also presented.

II. THE STANDARD HARMONIC BALANCE

TECHNIQUE

The standard harmonic balance technique has been re-

ported in many previous papers [1]–[3]. It forms the core

of the analysis described, and is of such importance to

microwave nonlinear circuit analysis that the technique

will be briefly reviewed.

The harmonic balance technique is an iterative tech-

nique which seeks to match the frequency components

(harmonics) of current in a set of branches joining two

subcircuits. Duality also applies to the technique; i.e., it

can match the voltage on either side of a set of nodes. For

simplicity in description, only the former case will be

considered here. The branches are chosen in such a way

that nonlinear elements are partitioned into one subcircuit

and linear elements into the other. The N branches at the

linear–nonlinear interface connect the two circuits and

define corresponding nodes; current flowing out of one

circuit must equal that flowing into the other. Matching

the frequency components in each branch satisfies the
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continuity equation for current. The current at each branch

is obtained by a process of iteration so that dependencies

are satisfied for both the linear and nonlinear sides of the

circuit.

The nonlinear circuit is generally represented by a non-

linear set of equations

iJ(t) =g(ul(t),. o ., UN(t)) (1)

where g is an arbitrary nonlinear function (and can in-

clude differentiation and integration), and i~ and UJ are

the .lth branch current and voltage, respectively. The de-

pendent variables i~ are nonlinear functions of the inde-

pendent variables UJ at some point in time T,. Periodic,

steady-state operation is assumed so that integrals and

derivatives at ~ maybe determined.
The linear circuit may be represented by an N by

(N+ M) matrix, obtained by standard linear circuit analy-

sis programs such as SUPERCOMPACT [4]. The M ad-

ditional variables are the additional external nodes (or

branches) at which applied voltages (or currents) are pre-

sent. The linear circuit matrix is calculated at each

frequency component present in the circuit. In the case of

an applied input signal which contains harmonically re-

lated components at a, 20,. ... qti, there will be (q+ 1)

matrices relating the independent variables at each branch

to the dependent variables

for

~ k_
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Linear “2 Nonlinear

Circuit ~ II MESFET
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i(t) = g(v(t), ~)

wp”r”s’t’csl-Ail I
1 I I I

Fig. 1. Analysis of an FET by the harmonic balance method showing
the partitioning of the circuit into linear and nonlinear subcircuits and

the definition of the variables at the linear-nonlinear interface.

sion is achieved using the discrete Fourier transform (DFT).

If estimates of uJ(t) for J= 1,,.0, N at some time ~ are

substituted into (l), iJ can be found at time T,. If this is

done at time instants ~, 2~,, , ., L~, an L-point sequence

of time samples of i~ results. The Nyquist sampling th eo-

rem states that if a sequence of points is obtained by a

sampling a waveform at a rate that is at least twice the

highest component contained, the original waveform {can

be reconstructed. If the waveform contains only discrete

frequencies which are spaced by integral multiples of u, up

[’1[
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——
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. . .
wv+~,(k~) “H iN(ka)

uN+l(/cti)

. . .
N, N+ M,(ko), :H

uN+M(kw)/

(2)

k= 0,1, ”.”, q

where the H,~ ( ku ) are impedance or transfer ratios, de-

pending on which of the variables are voltages, and which

are currents. The purpose of the harmonic balance pro-

gram is to find a simultaneous solution to (1) and (2) for

V1, V2, ..., VN so that il, i2, ” “ “~‘N mW be determined.
Fig. 1 illustrates the application of the technique to a

three-terminal device such as an FET. Two branches con-

stitute the FET gate input and the FET drain output; these

separate the nonlinear FET elements into one subcircuit

and the parasitic, matching, and output networks into

another (linear) subcircuit. The third branch is the source

of the FET and is chosen as the reference, so that N = 2.

Here, U1 and U2 are the independent variables, and il and
i2 are the dependent variables. Additional applied inputs

are the external voltages VI and Vz. The desired output

variables such as the current and voltage in the load can be

found once il and i2 are determined.

Equation (1) is stated in the time domain, and (2) is

stated in the frequency domain. Time-to-frequency conver-

to qa, one can set

25r

?= (2q+l)u

with L = (2 q + 1) to satisfy the Nyquist criterion, and can

extract the desired frequency components at a from the

L-point sequence by using the DFT.

An initial estimate must be made for i~ and UJ because

they are not known a priori. Iteration between (1) and (2)

is performed using the DFT to obtain the frequency com-

ponents from the time samples obtained from (1) until a

self-consistent set of variables (i.e., those which satisfy the

current continuity equations) is attained. The algorithm

used in the analysis is as follows.

1) Initial guesses are established for the current phasors

i=( k o ) at the interface branches at the dc, fundamental,
and harmonic frequencies (k = 0,1,. ... q). The overbar

refers to the current flowing in the linear “side” of the

interface branches:

2) The hybrid matrix for the linear circuit H( ku ) is

calculated at dc, the driving frequency u, and each

harmonic. This is used with ~(kco) and the applied exter-
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nal voltages in (2) to calculate the unknown phasor comp-

onents of voltage at each of the N branches.

3) Using an expression

q
u,~(t) = Real ~ ZJJ(kQ)eJ~”t

k=O

to derive the time value of the branch voltages at times

t= T~,2T . . ., LT, and a similar expression for deriva-

tives, the’’time samples of voltage and its derivatives may

be calculated at each of the N branches.

4) Values of iJ(t) in the nonlinear “side” of the inter-

face branches may be obtained at corresponding time

instants by substitution of the time samples of voltage

UJ( t ) and its derivatives into (l).
5) Using the DFT, the harmonic phasor components

i~( kti ) may be extracted from the L-point sequence of

iJ ( t) because the sequence consists of samples obtained at

the Nyquist rate.

6) An error function is formed to compare the “ nonlin-

ear” current estimates i~ with the “linear” estimates ~

k=O

7) The continuity equation for current states that the

“nonlinear” currents must equal the “linear” currents.

This corresponds to zero error function as a solution. The

error function is minimized by forming new initial guesses

for the current phasors ;J(kti) from the old estimates, and

repeating steps 2) through 7) until the error function lies

below some threshold. At this point, the linear and nonlin-

ear partitions give self-consistent results, since the currents

on each “side” of the interface branches are equal. In this
way, iJ and UJ are determined, and the voltage (or current)

can be found at any desired node in the circuit (e.g., at the

load) by linear analysis.

The fixed-point method of Hicks and Khan [5] was used

here to achieve convergence and force the error function to

zero, by allowing the phasor currents to more closely

approximate their true values on successive iterations. After

the r th iteration of the loop, consider the current in the

Jth branch

with corresponding

The next iteration is then carried out with ~,r+l,(kcc )

formed by

where p is determined by convergence considerations and

O < p <1. Hicks and Khan and other authors [6] have

investigated various criteria for convergence.

t

!W
L LA@ed Siqn.als
2
4 \ Th,,d-Order

_!?irJllll *

I“twmodul.atlon Product,

o f2- f, 2fl-f2 f, fz Zfz-f, Zf, f~f2 Zf;’ 3f, 3f~

FREQUENCY

Fig. 2. Expenmentrd setup for the measurement of two-tone mter-

modulation distortion m an amplifier. Two closely spaced tones at

frequencies ~1 and f2 are used as drive. The third-order intermodula-

tion products are at frequencies (2~1 – f2) and (2f2 – fl).

III. THE MODIFIED HARMONIC BALANCE METHOD

The harmonic balance technique described is an effi-

cient and powerful tool for nonlinear analysis, particularly

for distributed circuits, but is restricted to circuits with

single-frequency or harmonically related inputs. This is

because the DFT produces coefficients corresponding to

discrete frequency components, which have frequency

spacing ACJ= 27T/LT, = Q. For L = 2q +1, there are q of

these components, allowing the fundamental and its q

harmonics to be efficiently extracted from the L uniformly

spaced time-domain samples of the nonlinear current.
Fig. 2 shows a circuit which is used to determine the

intermodulation distortion response of an amplifier. Two

tones of slightly different frequency are superimposed at

the input of the amplifier. Nonlinearities in the amplifier

response produce additional spectral components at the

output. In the analysis of this circuit, which has two

nonharmonically related inputs at frequencies u ~ and Q2,

the interval between the discrete frequency components

from the DFT must be A = ti2 – cirl to ensure that all input

signals (and any mixing products generated by the nonlin-

earity) are among the output discrete spectral components.

A 2( qtiz)/A-point sequence of periodically spaced time

samples is thus required to produce DFT spectral compo-

nents at O, A,2A,. ... uA, U1,UZ,UZ+Z+ A,. ... qul,

qtil+ A,.-., qti2. For small frequency differences A (e.g.,

a microwave intermodulation measurement), this is an

enormous number of samples and beyond the numerical

accuracy of most computers, since the number of oper-

ations needed in any DFT operation increases faster than
N [7]. The modified harmonic balance (MHB) approach

[8] is a variant of the harmonic balance method which

permits efficient determination of all frequency compo-

nents for small A.

The modified harmonic balance method uses the band-

pass sampling theorem, which states that if a band-limited

signal lying between f. – B/2 and f. + B/2 is placed

suitably above the origin at fo, the signal waveform may

be completely reconstructed from time-domain samples of

the signal taken at a rate 2 B if f. is known. An analogy is

the operation of a spectrum analyzer, where down conver-

sion of the signal at f. to baseband allows the signal to be

sampled at a lower (bandpass) frequency.
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Consider the analysis of a waveform containing inter-

modudation components, i.e., one containing spectral com-

ponents at 2j1 – ~2, ~1, f2, and 2f2– fl. If the signal were

band-limited to these four components, it could be com-

pletely represented by a nine-point (two times four compo-

nents plus one) sequence of samples suitably chosen. Un-

fortunately, nonlinearities which produce sidebands at

(2~1 – f,) and (2f2 – fl) from inputs at fl and f, will also

produce components at fz – fl, 3f1, and 3f2. These compo-

nents occur because the nonlinear circuit may be analyti-

cally represented by a power series of at least third order.

Substitution of a simple two-sinusoidal input into this

power series will produce additional frequency compo-

nents not present in the input. These components are

extracted from the time samples at the output by the DFT,

and must be applied to the hybrid matrix representing the

linear circuit. Depending on the linear circuit, it is not

until then that these components are reduced to negligible

levels. Consequently, the desired band around fl and fz

from which we seek the level of intermodulation compo-

nents is NOT band limited to (2 fl – fz) to (2 fz – fl).

Bandpass sampling the (broad-band) time-domain wave-

form produced by the nonlinearity will result in aliasing

and incorrect computation of the desired components.

The process of aliasing may best be described mathe-

matically. If X~(eJ” ) is the DFT of a sequence x. (n =

0,1,... , N) obtained by periodic sampling of a time-

domain waveform x(t), i.e., if

1 N-1

xn=x(rrT~) =— ~ X~(ejk’’’)e~nko
Nk.o

where T, is the sampling interval and Q = 2 r/N, then

X~(eJ”) maybe found by assuming that the sequence x. is

periodic on N and is given by

A property of the DFT is that

‘K%)- ‘3)X,(eJ’’)=# _~x ‘+
sr—m

where X.( f) is the (analog) continuous Fourier transform

of x(t) [7]. X,(eJm) is periodic in u, and the baseband

interval – n < w < r is indistinguishable from other bands

spaced at higher multiples of m, Aliasing occurs in the

DFT whenever T, is so large that the increment 27r/~ by

which X= is linearly translated in (3) is sufficiently small to

cause successive shifts of the band to overlap. This occurs

if

1
:< (2 B)27r, i.e., T, > —

s 2B
(4)

where B is the total signal bandwidth and the factor 2 B

accounts for both positive and negative shifts of the band.

Fig. 3 demonstrates the effect of successive linear shifts on

X. to produce X,. Overlap between’ successive shifts does

not occur because T, equals the limit given in (4). Restated,

.Y, (I-J”]

Fig. 3. Comparison between the continuous Fourier transform XC,(~)

(top) and the DFT X,( eJ” ) (bottom). Sampling the time-domain wave-
form represented by X.(/) at a rate ~ = 1,/2B results in the periodic

translation and scaling shown to produce X,( eJ’” ).

aliasing will not occur if the sampling frequency 1/T, is at

least twice the bandwidth B of the band-limited spectra.

The above discussion assumes that the bottom edge of the

bandpass B is an integral multiple of 2B above the origin.

Slight shifting of the chosen bandwidth may be necessary

to achieve this. The bottom edge of the band will be

referred to as the bandedge in the following discussion,

where it is assumed to satisfy this criterion.

Consider the application of the bandpass sampling theo-

rem to the waveform represented by the spectrum in the

top of Fig. 4(a). Choose a bandwidth B of interest lying

between fl – 2A and fz + 1.5A, so that B = 4.5A and the

bandedge is at fl – 2A. The aliasing resulting from band-

pass sampling a non-band-limited signal is easily derived

using (3) and considering the translation of X. resulting

from various r. The beat frequency at fl – fl will be

translated by integral multiples of 2B upon sampling if

T.= l/2B. For the zero-translation case, the beat compo-

nent will remain in its frequency slot at A. When down-

shifted ( fl – 2A )/2B times, the component at fl – A will

also occupy the frequency slot at A. Since the sampled

frequency spectrum is given by (3) as the sum of the

analog spectra shifted by all possible periodic translations,

the component given by the DFT as the fundamental

frequency at A will not be the lowest order intermodula-
tion product (that at ( fl – A) downshifted) alone, but will

be this component summed with the beat-frequency com-

ponent. The bandpass sampling theorem is not truly appli-

cable in this instance because the signal being samplad is

not truly band limited to the region of interest ((i.e.,

(fl -2A) to (f, +1.5A)).
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Fig. 4. Sequence of shifts used for a simple waveform in order to

de-embed the aliasing. Here, d and e are the two fundamental outmrt

signals correspondin~ to the two applied input tones. (a) X.(~) at \he

output of the nonlinearity (top). The time-domam waveform corre-
sponding to Xa (~) is sampled at a bandpass rate. The baseband
spectral components X.( f) produced by application of the DFT to the
sampled sequence are shown at the bottom of the figure. (b) Same as

(a), but the two applied input signals have been translated down by A.
The output spectrum Xa (~) is correspondingly shifted. Different alias-
ing results, giving X.(~) at the bottom of the figure. (c) Same as (a), but
the two applied signals have been translated up by A. (d) The three
discrete output spectra X,(~) resulting from applied input signals at ~1
and fz (top), fl + A and f~ + A (middle), and fl – A and fz – A

(bottom).

Sampled Spectra
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Fig. 4. Continued

A. Controlled Aliasing

Two observations are pertinent to bandpass sampling.

The first is that although considerable aliasing occurs by

selecting a band window surrounding the desired spectral

components and sampling at the slow bandpass rate (T, =

l/2 B), most of the components at spacings A between the

beat frequency and the lower bandedge are zero and thus

do not contribute to the sampled spectrum. The second

observation is that the exact frequencies of the nonzero

components contributing to aliasing can be determined,

and their location in the aliased spectrum easily found.

This suggests the use of controlled aliasing to determine

the magnitude of these components.

Consider again the top waveform of Fig. 4(a). Periodic

sampling of the time-domain signal at the bandpass rate

and applying the DFT results in the aliasing shown in the

bottom of the figure, where the components labelled b and

c overlap in the spectrum obtained. Setting r = O in (3)

yields the components labeled a and b at frequencies O
and A. Setting r = + ( fl – 2A )/9A translates the compo-

nents c, d, e, and f into the frequency slots at A, 2A, 3A,

and 4A, respectively. The discrete spectrum X$ is the sum

of the spectra corresponding to these two values of r, as

shown in the bottom of the figure. Other values of r will

also translate X.( f), but will add in null components to

these frequency slots. Due to the periodicity of X$, the

baseband interval between O and 4.5A completely describes

the remaining translations, and hence X,. The magnitudes

a, d, e, and f can be directly determined from the Fourier

coefficients, but only the total magnitude of (b + c) is

known.

The heart of the controlled aliasing technique lies in the

solution of the remaining unknown magnitudes by simple,

linear algebra. Suppose the same two input signals of

relative magnitude d and e are applied to the system, as

before, but at frequencies shifted down by A to fl – A and
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~1, as shown in Fig. 4(b). For a low-Q device model (i.e.,

one in which the output signals do not vary rapidly with

slight frequency changes in the input signal, as for a

resistive nonlinearity), the output component magnitudes

a through ~ will be essentially unchanged. However, their

frequencies will be altered according to the order of the

nonlinearity that created them. Now the intermodulation

products will lie A lower than in the unshifted case, but the

beat frequency at A will be unchanged. Furthermore, be-

cause the position of the applied signals relative to the

bandedge has been changed, different aliasing will occur.
In this case, when r = + (~1 – 2A)/9A in (3), the band-

edge, now occupied by the component c, will overlap with

the dc component to give a total component (a + c) at

zero frequency (de). The component at ~1 – A, now of

value d, will overlap with the beat component b at A to

give a total Fourier coefficient at A of amplitude (b+ d ).

Since a and d are known from the first application of the

DFT, the value of the components b and c can be directly

obtained by simple subtraction. Fig. 4(c) shows an alter-

nate frequency shift (a translation up by A ) that could also

be used, and the baseband interval of the resulting aliased

spectra X.. Fig. 4(d) summarizes the DFT spectra ob-

tained from the three cases. Each is different.

The following generalizes the procedure for each node

when the band window is chosen to contain P discrete

spectral components (including the bandedge, which trans-

lates to dc): by sampling the time-domain nonlinear cur-

rent waveform at a very slow bandpass rate, P Fourier

coefficients can be obtained from the DFT. By frequency-

shifting the two input signals by A, recalculating the time-

domain waveform, and resampling, P additional, different

Fourier coefficients can be obtained from the DFT. If the

frequency translation, sampling, and DFT are repeated m

times, a total of mP Fourier coefficients are obtained.

Because the way in which the new frequency components

will alias is known, a system of mP linear algebraic

equations can be obtained relating the unknown compo-

nent magnitudes to the DFT coefficients obtained. By

inverting the system of equations just once, the unknown

amplitude of all frequency components can be obtained by

applying the inverse matrix to the DFT coefficients ob-

tained after m translations.

B. Solution for the Unknown Components

In the simplified example given, just two frequency

shifts were required, since only six frequency components

were present. The formulation and selection of indepen-

dent equations and their solution for the unknown ampli-

tudes were trivial in this case because all higher compo-

nents were ignored. If two input signals (of two different

frequencies) are applied to an analytic fifth-order nonlin-

earity, 31 frequency components (including dc) are present

in the output signal, and the band window of interest will

consist of six signals, each spaced by A (two fundamental

and two each of third- and fifth-order intermodulation

products). For bandpass sampling, a 13-point sequence of

samples spaced unformily l/13A in time (corresponding

to B = 6.5A) may be used to extract the signals of interest.

Since seven real and six imaginary Fourier coefficients will

be obtained from each 13-point sequence (de, A, 2A,...,, 6A

and P = 7), a minimum of m = 5 frequency shifts of the

input signals is needed to ensure that a sufficient number

of equations is obtained to permit solution of all 31

unknowns. However, these equations do not necessarily

form an independent basis. To form a set of 31 linearZy

independent equations relating the real unknowns and the

real part of the Fourier coefficients, a total of m = 6

translations is needed. This gives a selection of 42 equa-

tions, from which 31 linearly independent equations must

be chosen. An additional set of 30 equations is then

selected to relate the imaginary components. The imagin-

ary set contains one less equation than the set needed to

solve for the real parts because the dc component has no

imaginary part.

Other solutions exist to de-embed the aliasing. The

example above uses a bandwidth of 6.5A and calculates the

Fourier coefficients from a sequence of 13 time samples

sampled at a bandpass rate. An alternative approach would

be to open the band window of interest beyond 6.5A so

that fewer than six frequency translations would be re-

quired (i.e., increase P and reduce m). This would open up

more vacant slots and simplify the aliasing, but would

require more time samples for the DFT and be less compu-

tationally efficient. Alternatively, certain symmetry prop-

erties could be applied. If the two input signals were

always of equal level, the intermodulation products ;and

harmonics would also be of the same amplitude, and the

number of unknowns would be reduced by half [9]. This

approach was rejected here to enable the two input signals

to be of any (differing) arbitrary magnitude.

IV. IMPLEMENTATION OF THE MODIFIED HAWONIC

BALANCE PROCEDURE

Several modifications are needed in the standard

harmonic balance software to allow for the additional

frequency shifts required to de-embed the aliased ampli-

tudes. No changes are needed in the DFT algorithm which

performs the time-sample-to-frequency conversion, but the

algorithm to perform the phasor (frequency) -to-time con-

version must be altered to account for the different

frequency translations. During each iteration of the

harmonic balance loop, step 3) must now incorporate the

six frequency translations to calculate the six sets of time

samples sampled at a bandpass rate. Step 5) must perform

a DFT on each set to calculate the Fourier ‘coefficients,

and finally perform the inverse matrix multiplication to

de-embed the desired phasor current components. The

error function in step 6) is then calculated as an amplitude

error sum based on the frequency components that are
considered predominant. In the FET examples that folllow,

11 components (out of a total of 31) were included: the dc,

fundamentals, second harmonics, third harmonics, and the

third- and fifth-order intermodulation products. The mini-

mization is attempted by adjusting their values accord-

ingly. Looping back to step 2), the updated current esti-
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mates are reapplied to the linear circuit to calculate new

phasor voltages (at the 11 predominant frequencies) to

reimpress upon the model. The effect of additional higher

order frequency products resulting from the multiple-

frequency input is neglected.

The efficiency of the MHB technique is impressive. Six

sets of frequency translation requiring 13 time samples

each are needed; i.e., 78 calculations are required of the

nonlinear model to de-embed all 31 frequency compo-

nents. This is an improvement of several orders of magni-

tude over the brute-force Byquist method, which for ~1 = 10

GHz and A = 1 MHz would have required 30 000 time

samples to achieve the same result.

A. Limitations of the Technique

The MHB technique is the first reported application of

the harmonic balance method which is able to analyze

nonharmonically related signal excitations in a nonlinear

circuit of potentially any complexity [8]. Although other

solutions have since emerged [10], this method remains the

simplest for the analysis of intermodulation distortion,

resistive mixers, and small-signal gain suppression in non-

linear systems.

The method was implemented assuming a nonlinearity

of fifth order or less. Higher order frequency products will

cause aliasing that has not been accounted for and will not

be de-embedded. This occurs at larger signal strengths, at

which the higher order nonlinearities become significant.

In theory, de-embedding could be achieved for any desired

nonlinearity by increasing the band window. Fortunately,

signal strengths at which unaccounted for aliasing becomes

a problem can be detected by output asymmetry when a

symmetrical input waveform (one which has two equal

level tones) is applied.

The principal limitation of the method is that the device

must be low-Q, so that the frequency translation does not

affect the magnitude of the frequency component that we

seek. The frequency translation affects only the nonlinear

circuit and not the linear one. This poses no problem if the

nonlinearity is purely resistive, or if any frequency-depen-

dent elements in the model can be linearized and parti-

tioned into the linear circuit. However, for reactive nonlin-

earities, the small frequency translation can produce minute

changes in the signal amplitude. Unfortunately, these

changes are comparable to the level of many of the compo-
nents we are seeking to de-embed (e.g., the intermodula-

tion products). This phenomenon predominates at ex-

tremely low signal levels when numerical resolution is

poor, and can also be detected by asymmetry in the output

spectrum produced by two equal-level input signals. The

effect is eliminated by choosing an extremely narrow sig-

nal spacing relative to the carrier frequency. In the calcula-

tion of intermodulation distortion and gain suppression,

this is not a major problem, as the intermodulation prod-

ucts have been experimentally observed to be independent

of frequency separation [11]. Other intermodulation

analyses such as analytical methods [12], [13] or Volterra

series [14] also neglect the frequency dependence of the

signal separation.

B. Testing the Mod~ied Harmonic Balance Method

The MHB method was implemented in FORTRAN on

an IBM AT Personal Computer. The required memory for

the algorithm was 120K, with an additional 70K needed

when compiled with the physical FET model reported by

Madjar and Rosenbaum [15]. Run time was approximately

2 rnin for each solution. This is the first report of a

harmonic balance technique implemented on a desktop

person-

al computer. The strength of this implementation is that

it allows complete nonlinear, steady-state analysis of cir-

cuit–device interactions at a computer workstation.

The most useful check of nonlinear performance is to

apply an input signal of the form

V= (acos27f1t + bsin27f/gt)

to a fifth-order nonlinearity such as

I= V+ V2+V3+V4+V5

and solve for the frequency components of 1. The use of

two unequal signals levels a and b forces asymmetry in the

spectrum, and the use of cosine and sine terms checks both

the real and imaginary de-embedding. Analytical substitu-

tion of V into the expression for 1 is surprisingly complex.

For instance, the dc component equals

3a4 3b4 a2 + b2 3a2b2
—+T+— —

8 2 ‘2

while the intermodulation component at (2 u ~– U2) varies

sinusoidally with magnitude

[

13

(

33
— –a2b(a2+b2)+ab a+za3+jab2

74 )

a’

(

3

)

3 3 1+~b+ ~a2b+ ~b3 + ~a2b3+ ~a4b+ ~a2b3 .

Convergence was obtained very quickly in the test cases

because all the parasitic in the external circuit were re-

moved. A value of p = 0.9 reduces the error function by

10-2 each iteration. Computed values were as expected,

with relative errors in each component less than 10 – c.

V. EXAMFILES OF NONLINEAR CIRCUIT DESIGN

Several examples illustrating the usefulness of the

method are presented below.

A. FET Frequency Doubler Design

FET frequency doublers are important components in

microwave receivers. Wide-band doublers minimize local

oscillator requirements in phase-locked loops and tracking

systems because they provide a simple means of generating

higher frequency components.

Several design techniques for frequency doublers have

previously been reported [16]–[19]. The design presented

here uses single-gate MESFET’S and standard MIC

techniques, and uses the nonlinearity of the FET transcon-
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Fig. 5. Circuit topology of the nonlinear FET element (harmonic gener-

ator) usedwith the broad-band doubler.

ductance to achieve doubling. The circuit inherently rejects

the fundamental and odd-order harmonics over band-

widths greater than an octave. The bandwidth of the

doubler is limited only by the bandwidth of the Lange

couplers used at the FET input and output.

One difficulty in designing a doubler covering octave or

greater bandwidths is that the highest frequency in the

band to be doubled will overlap with the desired (second-

harmonic) output of a lower frequency input. Conse-

quently, the traditional approach of tuning the FET input

to the fundamental frequency and tuning the FET output

to the second-harmonic frequency will result in compro-

mised performance at the bandedges.

The second design difficulty lies in optimizing the FET

operating point to achieve maximum conversion efficiency,

i.e., to optimize circuit interaction with the device nonlin-

earityy. Tradeoffs between FET gain and harmonic conver-

sion efficiency are difficult to characterize.

This example describes how the nonlinear design tech-

nique can be used to synthesize the desired circuit and to

set the device bias and RF operating point, and illustrates

the circuit approach used to obtain inherently broad-band

operation. Two considerations are accounted for in the

design approach; the first is that conversion loss be as low

as possible, and the second is that the fundamental signal

be rejected. Using conventional approaches, that is par-

ticularly hard to achieve for a 4–8-GHz doubler at 8 GHz,

as this frequency is both the doubled 4-GHz signal and a

possible fundamental input.

The input and output circuits of the basic FET doubler

stage were synthesized for maximum flat gain across the

whole band using standard small-signal techniques. The

circuits can then be verified at small-signal levels with the

nonlinear algorithm and model. Unlike conventional

single-frequency doublers, however, the wide-band input

and output matching circuits must be low-Q to maximize

bandwidth. The FET’s used were NE71OOO.

The circuit topology for the nonlinear element chosen is

shown in Fig. 5. Using the MHB program with only a

single input frequency, the (small-signal-derived) matched
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Fig. 6. Modeled results of the nonlinear FET element of Fig. 5. Simula-
tions of fundamental and second harmonic output power are showrl as a
function of fundamental input power at (a) V&= – 0.5 V and (b)

VG~ = – 1.0 V. Drain-source voltage was 4 V.

FET stage was analyzed for doubling efficiency at various

device bias and RF drive points. The model used has been

previously reported [20], and contains a three-terminal

nonlinear capacitance ‘in addition to nonlinearities in g~

and g~. Optimum conversion efficiency was obtained by

setting the device bias near pinchoff, using an RF-bypassed

50-fl resistance in the source. Biased in this fashion, the

FET behaves as a harmonic generator. Modeled simula-

tions of fundamental and second-harmonic output power

at 8-GHz input are shown in Fig. 6. By varying the source

resistor, the gate–source bias voltage can be changed.

From the figure, optimum second-harmonic to fundamen-

tal output power is achieved with a gate bias of – 1 V and

an incident power around 5 dBm.

1) Circuit Topology: Although optimized for second

harmonic generation, the level of the fundamental fre-

quency at the single-stage FET output is still approxi-

mately 10 dB greater than the desired second harmlonic.

‘The single-stage doubler just described has no rejection,

because rejection would result in poor conversion perfor-

mance at the lower edge of the output band (which corre-

sponds to the upper edge of the input band in an octave

bandwidth design). In this application, the FET is used

solely as a nonlinear element for generation of a second
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ffJ

. .

3 dB 3dB 3dB 3 dB

Fig. 7. Construction of the broad-band doubler. The initiaf block com-

prises a pair of nonlinear FET harmonic generators coupled by two
antisymmetric Lange couplers to provide a 180° path difference. The
final block is a bafanced bandpass amplifier that uses symmetncafly
coupled Lange couplers to provide zero net phase difference.

Fig. 8. Photograph of the broad-band doubler. The input is in the lower
left corner of the figure.

harmonic and behaves like a half-wave rectifier. Any stable

device with sufficient microwave gain could be used in

place of the FET. For example, Schottky diodes could be

substituted for the FET’s in order to generate a second-

harmonic signal.

Fundamental frequency rejection is achieved by two

means.

The first involves coupling two FET half-wave rectifiers

antisymmetrically, so that conduction occurs on alternate

half-cycles, as illustrated in Fig. 7. Two Lange couplers,

oriented to provide a total path difference of 180°, are

ideal for this purpose, as they allow isolation between the

two half-circuits and provide good input and output VSWR

over the necessary bandwidth, in addition to the required
phase difference. The antisymmetric configuration effec-

tively nulls out the fundamental and odd-order harmonics,

because the 180° phase shift difference results in pure

cancellation (subtraction) of the odd-order frequencies.
The other way of achieving fundamental frequency re-

jection is by adding a following band-reject amplifier.

Additional cancellation of the fundamental is achieved in

this balanced amplifier stage, as its Lange couplers are

designed for the midrange of the output band and reject

the input band. In addition, the amplifier itself provides

gain at the second harmonic and rejection at the funda-

mental. Conventional small-signal techniques were used to

synthesize this stage.

A 5 6 7 8

.INPU’i FREQUENCY (GHz)

(a)

4 8

INPU; FREQ:ENCY7(GHZ)

(b)

Fig. 9. Measured doubler results, showing the (a) fundamental and
(b) second-harmonic output power as a function of frequency, for

input power levels of – 5, 0, and + 5 dBm.

1) Results: The circuit in Fig. 7 was fabricated on a

0.015-in alumina substrate and used Lange couplers

centered at 12 GHz. The complete doubler is shown in Fig.

8. Circuit size was 0.5 in. by 0.25 in. and power consump-

tion was 60 mA at 4 V input.

Measured doubler results are illustrated in Fig. 9. Input

drive level of + 5 dBm was found to give the highest

conversion efficiency, close to that determined in the simu-

lations. The second-harmonic output power was tuned to

rise slightly over the band to compensate for following

system losses. At 16 GHz, a peak output power of + 4
dBm was achieved, for a total conversion loss of 1 dB.

Rejection at the fundamental frequency was 20 dB. Maxi-

mum conversion loss of 6 dB was obtained at 8 GHz, with

fundamental frequency rejection of 15 dB. Fundamental

rejection was highest around 7 GHz due to a perfect phase

and amplitude balance in the input and output Lange

couplers at this frequency.

B. Reduction of Intermodr.dation Distortion in a

Power Amplifier

Intermodulation distortion is an undesirable effect in

communications amplifiers because it introduces a form of

crosstalk into the channel, as band-limited signals can
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Linear amplifier topology used in the MHB simulations

reduction of intermodnlation distortion.
for

interact with any odd-order nonlinearity to produce ad-

ditional frequency components that fall within the band.

The new components are known as intermodulation prod-

ucts, and limit the level at which linear amplifiers can

operate. As input power is increased, the stronger nonlin-

earities in the transfer characteristic of the amplifier be-

come significant and produce spectral components that

can interfere with the desired signal.

One of the principal advantages of the MHB method is

its ability to predict the effect of circuit–device interac-

tions on the level of the third-(and higher) -order intermod-

ulation products. A two-tone intermodulation test is able

to identify amplifier nonlinearity far more easily and accu-

rately than simple one-tone tests of compression and

AM/PM, in which small deviations from linear gain or

phase must be observed. The typical two-tone test uses

apparatus similar to that shown in Fig. 2, where two

closely spaced signals of equal level are impressed upon

the device input. The level of the fundamental and inter-

modulation products are observed as a function of input

power to give a measure of the system nonlinearity.
Intermodulation distortion can be reduced by careful

design techniques. Many of these maybe investigated with

the MHB technique. For instance, in an FET amplifier,

5-dB reduction of the third-order intermodulation product

may be achieved by simply ensuring that the second-

harmonic terminating impedance at the gate is a short

circuit. This prevents any second-harmonic voltage being

reimpressed upon the FET and mixing with a fundamental

input to produce an in-band distortion product. Other

means that have previously been investigated [20] include

raising the drain voltage or introducing some feedback

resistance.

A novel scheme was discovered during simulations with

the model. Fig. 10 illustrates the concept. Amplifier Al is a

matched FET amplifier driven simultaneously by applied

voltages VI and V2, where Vz is a voltage injected into the

FET drain. Simulations of this configuration were run

using the MHB approach. (Note that for intermociulation

simulations, both the signals VI and V2 actually consist of

two tones each.) An increase in the output power resulted.

Even though the FET inverts voltage VI at the drain so

that if Vz is of similar phase to VI the total RF drain-volt-

age swing is reduced, the current is increased and the

phase angle between the voltage and current at the output

~ COMPUTER SIMULATION
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Fig. 11. (a) Single-tone simulation of linear amplifier response as a

function of input power showing fundamental output power for V2 = O
(solid) and V2 = V, (dashed).(b) Two-tone simulation of linear ampli-
fier response and third-order intermodulation-distortion product as a
function of input power. Amplifier topology is shown in Fig. 10. The

solid curve shows response for V2 = O; the dashed curve for V2 = V1.

is reduced, so that the net output power actually increases.

Additionally, the reduction [n output voltage swin~, re-

duces the level of the third-order intermodulation distor-

tion. The voltage reduction is associated with the reactive

part of the load trajectory; the overall effect is similar to

an active load-pull, where the added voltage Vz provides a

form of dynamic tuning at the output in such a way as to

reduce distortion.

Computer simulations are shown in Fig. 11 for a low-

power prototype amplifier that used FET’s with a gate

width of 400 pm, Both VI and Vz were set equaJ in

amplitude and phase in the simulations used to derive Fig.

n(a) and (b), which are one-tone and two-tone power

curves respectively. The uppermost curve (dashed) in each

graph is the fundamental output power in the new system.

The solid curve indicates, for comparison, the modeled

response of the original system with Vz = O. As can be

seen, the distortion reduction effect occurs at high power

levels, where the distortion products are reduced by up to

10 dB. Furthermore, because of the increased output power,

the ratio of output power to intermodulation distortion



1304 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 12, DECEMBER 1986

Fig. 12. Discrete implementation of the linear amplifier of Fig. 10.

(C/1) is considerably increased. At an output power of 5

dBm, for example, the ratio has improved from 39 dB to

45 dB. At higher power levels, where the third-order prod-

uct begins to reduce, the improvement is substantially

greater.

The implementation of this scheme is very difficult using

discrete parts, and could be attempted more simply mono-

lithically. A discrete implementation is shown in Fig. 12.

There, the signal V2 is generated by coupling some of the

input signal VI into a secondary linear amplifier A ~, and

injecting the new signal into the output of the original

amplifier Al. It is important to note that this is not a

feedforward scheme, where amplifier AZ would be nonlin-

ear and used to generate distortion components that are

subtracted from those produced by Al. In this case, a

linear in-phase reproduction of the input signal (assumed

pure) is added to the output voltage produced by the FET.

In order to add the voltage V2 in series with the drain

output, a circulator was used. The resultant combined

voltage is then circulated to the output load. To match the

simulations, this would require that A ~ have zero source

impedance and produce an internal voltage swing of Vz

equal to V1. Since the outputs of both Al and A* were

internally matched to 50 G, the voltage added by A ~ was

actually Vz/2 if VJ is the internal output voltage of A ~. In

a monolithic implementation, A ~ could be designed with

low output impedance and act as a voltage source to Al to

overcome this difficulty.

In its practical implementation, an NEC NEZ5964-6

6-W power FET was driven as part of a 50-dB gain

amplifier chain. To supply the injected RF drain voltage,

an 8-dB branch-line coupler and an NEC NEZ5964-3 3-W

device were used as amplifier AZ. Fig. 13(a) shows the

measured intermodulation distortion spectrum of A ~ alone

driven with two signals of +34 dBm each at the output.

Fig. 13(b) shows the spectrum when A* is added; third-

order products are reduced by 8 dB and fifth-order prod-

ucts by over 20 dB. Simple power combining of the NEZ-3

with the NEZ-6 would theoretically reduce the third-order

products alone by only 3.5 dB. Relatively narrow band-

widths (100 MHz) were achieved because of the discrete,

internally matched components used.

The phase of Vz relative to VI can be varied through any

phase angle in the simulations. As it is rotated through 90°

to 180°, the opposite effects are observed: lower output

(a)

(b)

Fig. 13. Measured intermodulation spectrum of a 6-W power amplifier
with two output” signals of +34 dBm each at the output, (a) Without
signal injection at the drain. (b) With signal injection at the drain.

Vertical scale is 10 dB per division.

power, higher distortion products, and severely de-

teriorated power-to-distortion ratio. Experimentally, phase

tuning was achieved by using a variable-length microstrip

line at the output of AZ.

In a typical power-combined amplifier using a 3-dB

hybrid at its output, the output powers of two identical

FET’s are combined to increase output power. Conse-

quently, a 3-dB improvement in intercept point is achieved,

with a theoretical improvement in C/I of 6 dB due to the

back-off possible in operating with lower output power.

The scheme presented here also employs a type of power

combining, but the FET’s need no longer be of equal

power-handling capability. For the additional cost of a

coupler and a circulator, considerably greater improve-

ment in C/I can be achieved compared to power combin-

ing amplifiers, due to the improved linearity obtained by

using vectorial addition of the output voltages to dynami-

cally tune the FET. Such a scheme could be more efficient

than either present predistorter or “back-off” approaches.

C. Gain Suppression in Limiting Amplifiers

A phenomenon that has been known for a considerable

time in limiting amplifiers [21], [22] and nonlinear ampli-
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Fig. 14. Two-tone tests of the FET feedback amplifier. Two unequal
level tones of level PIN and PIN – 3 dB were apphed. The top set of

measured and simulated curves shows the output power in each funda-

mental carrier; the bottom set shows the level of each third-order

intermodulatlon sideband. Measured curves are dashed; simulated are

solid.
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Fig. 15. Same as Fig. 14, but with two applied tones of level PIN and

PIN – 5 dB.

fiers [23] is the possible improvement of 3 dB in the output

signal-to-noise ratio of a signal which is much stronger

than the noise. A consequence of this result is that, for

large signal-to-noise ratios, the output power ratio of a

weak signal to a much stronger (simultaneous) signal at a

different frequency in the band can be up to 6 dB less than

the same ratio at the input of the limiter or saturating

amplifier. This is known as gain suppression of the weaker

signal. The MHB method can be used to demonstrate this

trend by performing an intermodulation analysis in which

the two input tones are of unequal level. The advantages

of this approach over previous analytical treatments of the

phenomenon are that the nonlinearity is a dynamic func-

tion of the instantaneous operating point of the device

(because a device model is used), and that the frequency

components are obtained numerically.

‘G 7531

2DS 15PF ZD 50(,

T-1

Fig. 16. Lumped element equivalent circuit model of the FET feeclback

amplifier used m the gain-suppression experiments of Figs. 14 and 15.

Figs. 14 and 15 show both simulations and experimental

results for the fundamental output power and third-order

product in each of the two carriers and their sidebands.

The simulations are shown as solid lines; the experiments

as dashed. The amplifier used is illustrated in Fig.. 16; it

comprises an NEC 72083 FET embedded in a resistive

feedback circuit, with a feedback resistor of 500 0. The

FET was biased at V&= – 0.25 V and V~~ = 3 V,, and

driven well into saturation by two tones at the gate of

frequency 2.000 and 2.001 GHz. The horizontal axis in

Figs. 14 and 15 represents the power incident in the

strongest signal. In Fig. 14, the smaller incident signal is 3

dB weaker than this; in Fig. 15, it is 5 dB weaker. In both

cases, the small-signal gain is 9 dB. At an incident power

of + 8 dBm for the strongest signal, the amplifier is

compressed, and the stronger signal output power is 14.3

dBm in Fig. 14 and 14.5 dBm in Fig. 15. In Fig. 14, the

output power of the weaker signal (at 5-dBm incident

power) is then just 9 dBm. Similarly, in Fig. 15, the weaker

signal of 3-dBm incident power produces an output power

of just 7 dBm. In both cases, the gain of the small signal

has been suppressed by about 2.5 dB.

The measured behavior of the third-order intermodula-

tion sidebands is also interesting. The difference in levels

between the two third-order products is directly propor-

tional to the level separation between the two input signals

(3 dB and 5 dB, respectively). The simulations also show

that the separation between the two second-harmonic sig-

nals is twice (in dB) the input signal level separation, and

three times the input level separation for the third-harmonic

outputs.

Agreement between the measured and simulated results
is good. The amplifier used in the simulations was not an

ideal limiting amplifier, but the onset of gain compression

and saturation gave it similar characteristics. U nfor-

tunately, an ideal limiting amplifier has nonlinear tenms of

infinite order, and the results obtained by this method

would be in error due to the additional aliasing. By consid-

ering a “soft limiter,” the MHB technique could be useful

in the design of nonlinear amplifiers tailored for suitable

gain characteristics. A predistorter is an example. The

application of the technique to the analysis and design of
resistive mixers is also straightforward, and is simillar to

the example just given.
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VI. CONCLUSIONS

A technique that permits the investigation of device–cir-

cuit nonlinearities for two input frequencies has been

presented. Using modifications to an existing FET model

[15], [20], a harmonic balance method was devised which

was efficiently implemented on an IBM PC-AT and which

overcame the problems associated with a small frequency

difference relative to the carrier frequency. By bandpass

sampling the time-domain waveform generated by the FET

model, and by small input frequency changes, the desired

fundamental and intermodulation components can be re-

constructed from the aliased spectrum. By achieving a

harmonic balance between the frequency components

present in the nonlinear model and the linear circuit,

Kirchhoff’s laws are satisfied. This enables the effect of

circuit and device parameter changes to be determined for

both single- and two-tone excitation. The method is

numerically efficient because:

i) the linear circuit is analyzed by an N-port matrix in

the frequency domain, where differing time constants cor-

respond only to different amplitude phasor components,

and additional branches do not increase the size of the

matrix;

ii) the time-domain waveform from the model is sam-

pled not at the Nyquist rate for two closely spaced signals,

but at the bandpass rate; and

iii) the time-domain waveform is obtained as an explicit

function of the input nodal voltages and their time deriva-

tives.

The method in principle allows any nonlinear time-do-

main model to be used. The nonlinearity can be a function

of the instantaneous (unknown) operating point; i.e., it can

account for changing bias conditions. Harmonics and

higher order frequencies generated are reimposed as ad-

ditional inputs to the model, and a solution is obtained for

the phasor value of every frequency component present,

including dc components.

The restrictions on the method as implemented are that

the nonlinearity be no greater than fifth order, and that if

the nonlinearity is frequency-dependent (i.e., nonresistive),

the frequency spacing of the two input signals be much

less than the carrier frequency. The method gives results

identical to the standard harmonic balance method for all

nonlinearities whenever the input level of the second tone

is set to zero.

Three novel examples of nonlinear circuit design have

been presented. The first is of a novel FET frequency

doubler, covering octave bandwidths. The MHB method

was used with a single-tone input to set the device bias and

operating points. The circuit structure is applicable to any
microwave nonlinear device as the active element. Using

single-gate FET’s, conversion efficiencies of from – 1 to

– 6 dB were obtained across the output frequency band of

8 to 16 GHz. The second was a technique which allows

reduction of third-order intermodulation distortion in a

power amplifier. Implementation using discrete elements

resulted in an improvement of 8 dB in the C/I ratio of a

power amplifier with two tones at the output of 34 dBm

each. The final example illustrated gain suppression in a

limiting amplifier, and demonstrated the rejection of the

smaller of two signals in an amplifier driven into satura-

tion.
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