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Nonlinear Circuit Design Using the Modified
Harmonic Balance Algorithm

ROWAN GILMORE, MEMBER, IEEE

Abstract — A modification to a harmonic balance algorithm allows the
nonlinear analysis of circuits driven by two nonharmonically related input
frequencies. The algorithm was implemented on an IBM AT Personal
Computer.

Three examples are presented to illustrate the analysis. The first is a
novel wide-band FET frequency doubler that achieves an average conver-
sion loss of 3.5 dB over the 8—~16-GHz output band. The second example
illustrates a technique used in the design of a C-band power amplifier in
which third-order intermodulation distortion was reduced by 8 dB with two
tones of 34 dBm each at the output. The final example illustrates the gain
suppression of a smaller tone in the presence of a larger one of slightly
different frequency in a limiting amplifier. Simulations agree with mea-
surements in which 2.5-dB gain suppression was observed in a 2-GHz FET
feedback amplifier driven into saturation.

I. INTRODUCTION

OLID-STATE microwave components are all nonlin-
ear to some degree. In communication amplifiers, any
nonlinearity in the phase and amplitude of the voltage-
transfer characteristics must be minimized to preserve the
shape and spectral content of the signal. However, compo-
nents such as limiting amplifiers, oscillators, doublers, and
mixers rely on device nonlinearity for proper operation. In
all cases, complete circuit analysis of these components
requires a nonlinear device model and analytic means to
extract the effect of device—circuit interactions from the
model. This paper describes a tool to achieve this.
Characterization of a nonlinear device by a time-domain
model is usually appropriate because circuit models typi-
cally relate output parameters to input parameters in a
causal fashion (often through the device physics). How-
ever, a description of the linear circuit is most convenient
in the frequency domain. A frequency-domain description
of linear circuits is particularly advantageous at microwave
frequencies as transmission lines are simply and accurately
represented by phasor rotation in the complex plane, and
elements such as large-bias capacitors simply map a phasor
into a different magnitude and angle and pose little com-
putational burden. A description of elements such as these
in the time domain is not only difficult but would necessi-
tate very long integration times to reach steady state.
Finally, additional nodes and branches added to an exist-
ing N-port circuit do not change the size of the N by N
matrix needed to represent the circuit in the frequency
domain, whereas each addition represents an extra state-
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space equation that must be solved in the time-domain
description of the circuit.

A method which weds frequency-domain linear circuit
analysis to an arbitrary nonlinear device model repre-
sented in the time domain is the harmonic balance tech-
nique [1]. The purpose of this paper is to review and
modify the harmonic balance procedure to allow the study
of nonharmonically related inputs. Three examples will be
presented. The first example is a 8-16-GHz wide-band
frequency-doubler in which conversion gains of —1 to —6
dB were achieved over the octave bandwidth. The second
example is a linear amplifier in which the analytical tech-
nique demonstrated a way to reduce intermodulation dis-
tortion. A 6-W amplifier was built in which the third-order
intermodulation distortion products were 18 dB below two
signals of + 34 dBm each at the output. This was an 8-dB
improvement over a similar amplifier without the lineariza-
tion technique. The final example illustrates gain suppres-
sion in limiting amplifiers, that is, the suppression of a
smaller signal in the presence of a larger signal of different
frequency at the output of an amplifier driven into satura-
tion. In all three examples, computer simulations are used
to design the nonlinear circuit and to predict device behav-
ior as a function of drive level. The results of supporting
measurements are also presented.

II. THE STANDARD HARMONIC BALANCE
TECHNIQUE

The standard harmonic balance technique has been re-
ported in many previous papers {1]-[3]. It forms the core
of the analysis described, and is of such importance to
microwave nonlinear circuit analysis that the technique
will be briefly reviewed.

The harmonic balance technique is an iterative tech-
nique which seeks to match the frequency components
(harmonics) of current in a set of branches joining two
subcircuits. Duality also applies to the technique; i.e., it
can match the voltage on either side of a set of nodes. For
simplicity in description, only the former case will be
considered here. The branches are chosen in such a way
that nonlinear elements are partitioned into one subcircuit
and linear elements into the other. The N branches at the
linear—nonlinear interface connect the two circuits and
define corresponding nodes; current flowing out of one
circuit must equal that flowing into the other. Matching
the frequency components in each branch satisfies the
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continuity equation for current. The current at each branch
is obtained by a process of iteration so that dependencies
are satisfied for both the linear and nonlinear sides of the
circuit.

The nonlinear circuit is generally represented by a non-
linear set of equations

iy(t) =g(vi(2), -, vx(2)) (1)
where g is an arbitrary nonlinear function (and can in-
clude differentiation and integration), and i, and v, are
the Jth branch current and voltage, respectively. The de-
pendent variables i, are nonlinear functions of the inde-
pendent variables v, at some point in time T,. Periodic,
steady-state operation is assumed so that integrals and
derivatives at T, may be determined. '

The linear circuit may be represented by an N by
(N + M) matrix, obtained by standard linear circuit analy-
sis programs such as SUPERCOMPACT [4]. The M ad-
ditional variables are the additional external nodes (or
branches) at which applied voltages (or currents) are pre-
sent. The linear circuit matrix is calculated at each
frequency component present in the circuit. In the case of
an applied input signal which contains harmonically re-
lated components at w,2w,- -, gw, there will be (g +1)
matrices relating the independent variables at each branch
to the dependent variables

v (kw) Hu(k"-’) le(kw)
! : _ Hzl(k‘*’) sz(k‘*’)
v (kw) : :
v HNl(kw) HNz(k‘*’)
for
k=0,1,--+,q

where the H, (kw) are impedance or transfer ratios, de-
pending on which of the variables are voltages and which
are currents. The purpose of the harmonic balance pro-
gram is to find a simultaneous solution to (1) and (2) for
U1, Uy, *, Uy 50 that i, i,,- -+, iy may be determined.

Fig. 1 illustrates the application of the technique to a
three-terminal device such as an FET. Two branches con-
stitute the FET gate input and the FET drain output; these
separate the nonlinear FET elements into one subcircuit
and the parasitics, matching, and output networks into
another (linear) subcircuit. The third branch is the source
of the FET and is chosen as the reference, so that N = 2.
Here, v, and v, are the independent variables, and i; and
i, are the dependent variables. Additional applied inputs
are the external voltages V; and V,. The desired output
variables such as the current and voltage in the load can be
found once i, and i, are determined.

Equation (1) is stated in the time domain, and (2) is
stated in the frequency domain. Time-to-frequency conver-
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Fig. 1. Analysis of an FET by the harmonic balance method showing
the partitioning of the circuit into linear and nonlinear subcircuits and
the definition of the variables at the linear—nonlinear interface.

sion is achieved using the discrete Fourier transform (DFT).
If estimates of v,(¢) for J=1,--+, N at some time 7, are
substituted into (1), i, can be found at time 7,. If this is
done at time instants 7,,27,,-+ +, LT,, an L-point sequence
of time samples of i, results. The Nyquist sampling theo-
rem states that if a sequence of points is obtained by a
sampling a waveform at a rate that is at least twice the
highest component contained, the original waveform can
be reconstructed. If the waveform contains only discrete
frequencies which are spaced by integral multiples of , up

i(kw)
Hl(N+M)(kw)
H2<N+M)(k"-’) iy(kw) )
Oy-1(ke)
HN(N+M)(/“°)
Unen (ko)
to qw, one can set
29
Ts,= 2¢+1)w

with L = (24 +1) to satisfy the Nyquist criterion, and can
extract the desired frequency components at « from the
L-point sequence by using the DFT.

An initial estimate must be made for i; and v; because
they are not known a priori. Iteration between (1) and (2)
is performed using the DFT to obtain the frequency com-
ponents from the time samples obtained from (1) until a
self-consistent set of variables (i.e., those which satisfy the
current continuity equations) is attained. The algorithm
used in the analysis is as follows.

1) Initial guesses are established for the current phasors
;(kw) at the interface branches at the dc, fundamental,
and harmonic frequencies (k=0,1,---,g). The overbar
refers to the current flowing in the linear “side” of the
interface branches.

2) The hybrid matrix for the linear circuit H(kw) is
calculated at dc, the driving frequency w, and each
harmonic. This is used with i (kw) and the applied exter-
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nal voltages in (2) to calculate the unknown phasor com-
ponents of voltage at each of the N branches.
3) Using an expression

q
v,(t) =Real Y v,(kw)e/ !
k=0

to derive the time value of the branch voltages at times
t=T,2T,---,LT, and a similar expression for deriva-
tives, the time samples of voltage and its derivatives may
be calculated at each of the N branches.

4) Values of i,;(¢) in the nonlinear “side™ of the inter-
face branches may be obtained at corresponding time
instants by substitution of the time samples of voltage
v;(¢) and its derivatives into (1).

5) Using the DFT, the harmonic phaser components
i;(kw) may be extracted from the L-point sequence of
i;(t) because the sequence consists of samples obtained at
the Nyquist rate.

6) An error function is formed to compare the “nonlin-
ear” current estimates i; with the “linear” estimates i,

E(i17i27" '7iN7 il ’ i2""7 iN)
g
= 3 (ln(ke) =iy (ko) P+ -+ +iy(ke) =iy (ko))
k=0

7) The continuity equation for current states that the
“nonlinear” currents must equal the “linear” currents.
This corresponds to zero error function as a solution. The
error function is minimized by forming new initial guesses
for the current phasors i;(kw) from the old estimates, and
repeating steps 2) through 7) until the error function lies
below some threshold. At this point, the linear and nonlin-
ear partitions give self-consistent results, since the currents
on each “side” of the interface branches are equal. In this
way, i; and v, are determined, and the voltage (or current)
can be found at any desired node in the circuit (e.g., at the
load) by linear analysis.

The fixed-point method of Hicks and Khan [5] was used
here to achieve convergence and force the error function to
zero, by allowing the phasor currents to more closely
approximate their true values on successive iterations. After
the rth iteration of the loop, consider the current in the
Jth branch

i (1) =i, (ke)es e

k

with corresponding
i () =X iy (ke)er .

k
The next iteration is then carried out with E(M)(kw)
formed by

;;(r+1)(kw) = pi],(kw) + (1 - p) ;r(kw)

where p is determined by convergence considerations and
0 < p<1. Hicks and Khan and other authors [6] have
investigated various criteria for convergence.
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Fig. 2. Experimental setup for the measurement of two-tone inter-
modulation distortion 1n an amplifier. Two closely spaced tones at
frequencies f; and f, are used as drive. The third-order intermodula-
tion products are at frequencies (2f; — f») and (2f, — f;).

III. TurE MobIFIED HARMONIC BALANCE METHOD

The harmonic balance technique described is an effi-
cient and powerful tool for nonlinear analysis, particularly
for distributed circuits, but is restricted to circuits with
single-frequency or harmonically related inputs. This is
because the DFT produces coefficients corresponding to
discrete frequency components, which have frequency
spacing Aw =27/LT,=w. For L =24 +1, there are g of
these components, allowing the fundamental and its ¢
harmonics to be efficiently extracted from the L uniformly
spaced time-domain samples of the nonlinear current.

Fig. 2 shows a circuit which is used to determine the
intermodulation distortion response of an amplifier. Two
tones of slightly different frequency are superimposed at
the input of the amplifier. Nonlinearities in the amplifier
response produce additional spectral components at the
output. In the analysis of this circuit, which has two
nonharmonically related inputs at frequencies w, and w,,
the interval between the discrete frequency components
from the DFT must be A = w, — w; to ensure that all input
signals (and any mixing products generated by the nonlin-
earity) are among the output discrete spectral components.
A 2(qw,)/A-point sequence of periodically spaced time
samples is thus required to produce DFT spectral compo-
nents at 0, A, 24,---, w; — A, @y, @y, 0, + A0 -, gy,
qw,+A,---, qu,. For small frequency differences A (e.g.,
a microwave intermodulation measurement), this is an
enormous number of samples and beyond the numerical
accuracy of most computers,. since the number of oper-
ations needed in any DFT operation increases faster than
N [7]. The modified harmonic balance (MHB) approach
[8] is a variant of the harmonic balance method which
permits efficient determination of all frequency compo-
nents for small A.

The modified harmonic balance method uses the band-
pass sampling theorem, which states that if a band-limited
signal lying between f,—B/2 and f,+ B/2 is placed
suitably above the origin at f, the signal waveform may
be completely reconstructed from time-domain samples of
the signal taken at a rate 2B if f; is known. An analogy is
the operation of a spectrum analyzer, where down conver-
sion of the signal at f; to baseband allows the signal to be
sampled at a lower (bandpass) frequency. ‘
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Consider the analysis of a waveform containing inter-
modulation components, i.c., one containing spectral com-
ponents at 2f, — f,, f1, f,, and 2f, — f,. If the signal were
band-limited to these four components, it could be com-
pletely represented by a nine-point (two times four compo-
nents plus one) sequence of samples suitably chosen. Un-
fortunately, nonlinearities which produce sidebands at
2f,— f,) and (2f, — f,) from inputs at f; and f, will also
produce components at f, — f;, 3f,, and 3f,. These compo-
nents occur because the nonlinear circuit may be analyti-
cally represented by a power series of at least third order.
Substitution of a simple two-sinusoidal input into this
power series will produce additional frequency compo-
nents not present in the input. These components are
extracted from the time samples at the output by the DFT,
and must be applied to the hybrid matrix representing the
linear circuit. Depending on the linear circuit, it is not
until then that these components are reduced to negligible
levels. Consequently, the desired band around f; and f,
from which we seek the level of intermodulation compo-
nents is NOT band limited to 2f;— f,) to 2f, — f1).
Bandpass sampling the (broad-band) time-domain wave-
form produced by the nonlinearity will result in aliasing
and incorrect computation of the desired components.

The process of aliasing may best be described mathe-
matically. If X (e/®) is the DFT of a sequence x, (n=
0,1,---, N) obtained by periodic sampling of a time-
domain waveform x(¢), i.e., if

1 N-1
x,=x(nT) == ¥ X(eH@)elmte
N 2o
where T, is the sampling interval and «=27/N, then
X,(e/“) may be found by assuming that the sequence x,, is
periodic on N and is given by
N-1
X(e#*) = T x,e7e.
n=0
A property of the DFT is that

1 = Jjw  jlar
xen-7 £ x[ZeE0) @

where X,(f) is the (analog) continuous Fourier transform
of x(¢) [7]. X,(e’*) is periodic in w, and the baseband
interval — 7 < w < « is indistinguishable from other bands
spaced at higher multiples of #. Aliasing occurs in the
DFT whenever T, is so large that the increment 27/7T, by
which X, is linearly translated in (3) is sufficiently small to
cause successive shifts of the band to overlap. This occurs
if
1

ie., T,> (4)

27 (2B)2
7 < @B)27, 2B

where B is the total signal bandwidth and the factor 2B
accounts for both positive and negative shifts of the band.
Fig. 3 demonstrates the effect of successive linear shifts on
X, to produce X,. Overlap between' successive shifts does
not occur because T, equals the limit given in (4). Restated,

1297

Xa(h)
-
i =
/ ) fo*%
T w0
Xo{e')

-2r BT 27 BT

Fig. 3. Comparison between the continuous Fourier transform X, (f)
(top) and the DFT X, (/) (bottom). Sampling the time-domain wave-
form represented by X,(f) at a rate T, =1/2B results in the periodic
translation and scaling shown to produce X, (e/*).

aliasing will not occur if the sampling frequency 1/7, is at
least twice the bandwidth B of the band-limited spectra.
The above discussion assumes that the bottom edge of the
bandpass B is an integral multiple of 2B above the origin.
Slight shifting of the chosen bandwidth may be necessary
to achieve this. The bottom edge of the band will be
referred to as the bandedge in the following discussion,
where it is assumed to satisfy this criterion.

Consider the application of the bandpass sampling theo-
rem to the waveform represented by the spectrum in the
top of Fig. 4(a). Choose a bandwidth B of interest lying
between f; —2A and f,+1.54, so that B=4.5A and the
bandedge is at f; —2A. The aliasing resulting from band-
pass sampling a non-band-limited signal is easily derived
using (3) and considering the translation of X, resulling
from various r. The beat frequency at f,— f; will be
translated by integral multiples of 2B upon sampling if
T.=1/2B. For the zero-translation case, the beat compo-
nent will remain in its frequency slot at A. When down-
shifted (f; —2A)/2B times, the component at f; — A will
also occupy the frequency slot at A. Since the sampled
frequency spectrum is given by (3) as the sum of the
analog spectra shifted by all possible periodic translations,
the component given by the DFT as the fundamental
frequency at A will not be the lowest order intermodula-
tion product (that at (f; — A) downshifted) alone, but will
be this component summed with the beat-frequency com-
ponent. The bandpass sampling theorem is not truly appli-
cable in this instance because the signal being sampled is
not truly band limited to the region of interest (i.e.,

(f1—24) to (f, +1.54)).
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Fig. 4. Sequence of shifts used for a simple waveform in order to
de-embed the aliasing. Here, d and e are the two fundamental output
signals corresponding to the two applied input tones. (a) X,(f) at the
output of the nonlinearity (top). The time-domain waveform corre-
sponding to X, (f) is sampled at a bandpass rate. The baseband
spectral components X, (f) produced by application of the DFT to the
sampled sequence are shown at the bottom of the figure. (b) Same as
(a), but the two applied input signals have been transiated down by A.
The output spectrum X, (f) is correspondingly shifted. Different alias-
ing results, giving X, (f) at the bottom of the figure. (c) Same as (a), but
the two applied signals have been translated up by A. (d) The three
discrete output spectra X, (f) resulting from applied input signals at f;
and f, (top), fi+A and f,+A (middle), and f,— A and f, —A
(bottom).
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A. Controlled Aliasing

Two observations are pertinent to bandpass sampling.
The first is that although considerable aliasing occurs by
selecting a band window surrounding the desired spectral
components and sampling at the slow bandpass rate (7, =
1/2B), most of the components at spacings A between the
beat frequency and the lower bandedge are zero and thus
do not contribute to the sampled spectrum. The second
observation is that the exact frequencies of the nonzero
components contributing to aliasing can be determined,
and their location in the aliased spectrum easily found.
This suggests the use of controlled aliasing to determine
the magnitude of these components.

Consider again the top waveform of Fig. 4(a). Periodic
sampling of the time-domain signal at the bandpass rate
and applying the DFT results in the aliasing shown in the
bottom of the figure, where the components labelled 5 and
¢ overlap in the spectrum obtained. Setting r =0 in (3)
yields the components labeled @ and b at frequencies 0
and A. Setting r = +(f; —2A)/9A translates the compo-
nents ¢, d, e, and f into the frequency slots at A, 2A, 3A,
and 4A, respectively. The discrete spectrum X, is the sum
of the spectra corresponding to these two values of r, as
shown in the bottom of the figure. Other values of » will
also translate X,(f), but will add in null components to
these frequency slots. Due to the periodicity of X,, the
baseband interval between 0 and 4.5A completely describes
the remaining translations, and hence X,. The magnitudes
a, d, e, and f can be directly determined from the Fourier
coefficients, but only the total magnitude of (b+c¢) is
known.

The heart of the controlled aliasing technique lies in the
solution of the remaining unknown magnitudes by simple,
linear algebra. Suppose the same two input signals of
relative magnitude d and e are applied to the system, as
before, but at frequencies shifted down by A to f; — A and
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f1, as shown in Fig. 4(b). For a low-Q device model (i.e.,
one in which the output signals do not vary rapidly with
slight frequency changes in the input signal, as for a
resistive nonlinearity), the output component magnitudes
a through f will be essentially unchanged. However, their
frequencies will be altered according to the order of the
nonlinearity that created them. Now the intermodulation
products will lie A lower than in the unshifted case, but the
beat frequency at A will be unchanged. Furthermore, be-
cause the position of the applied signals relative to the
bandedge has been changed, different aliasing will occur.
In this case, when r=+(f;—2A)/9A in (3), the band-
edge, now occupied by the component ¢, will overlap with
the dc component to give a total component (a + ¢) at
zero frequency (dc). The component at f; — A, now of
value d, will overlap with the beat component b at A to
give a total Fourier coefficient at A of amplitude (b + d).
Since a and d are known from the first application of the
DFT, the value of the components b and ¢ can be directly
obtained by simple subtraction. Fig. 4(c) shows an alter-
nate frequency shift (a translation up by A) that could also
be used, and the baseband interval of the resulting aliased
spectra X,. Fig. 4(d) summarizes the DFT spectra ob-
tained from the three cases. Each is different.

The following generalizes the procedure for each node
when the band window is chosen to contain P discrete
spectral components (including the bandedge, which trans-
lates to dc): by sampling the time-domain nonlinear cur-
rent waveform at a very slow bandpass rate, P Fourier
coefficients can be obtained from the DFT. By frequency-
shifting the two input signals by A, recalculating the time-
domain waveform, and resampling, P additional, different
Fourier coefficients can be obtained from the DFT. If the
frequency translation, sampling, and DFT are repeated m
times, a total of mP Fourier coefficients are obtained.
Because the way in which the new frequency components
will alias is known, a system of mP linear algebraic
equations can be obtained relating the unknown compo-
nent magnitudes to the DFT coefficients obtained. By
inverting the system of equations just once, the unknown
amplitude of all frequency components can be obtained by
applying the inverse matrix to the DFT coefficients ob-
tained after m translations.

B. Solution for the Unknown Components

In the simplified example given, just two frequency
shifts were required, since only six frequency components
were present. The formulation and selection of indepen-
dent equations and their solation for the unknown ampli-
tudes were trivial in this case because all higher compo-
nents were ignored. If two input signals (of two different
frequencies) are applied to an analytic fifth-order nonlin-
earity, 31 frequency components (including dc) are present
in the output signal, and the band window of interest will
consist of six signals, each spaced by A (two fundamental
and two each of third- and fifth-order intermodulation
products). For bandpass sampling, a 13-point sequence of
samples spaced unformily 1/13A in time (corresponding
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to B =6.5A) may be used to extract the signals of interest.
Since seven real and six imaginary Fourier coefficients will
be obtained from each 13-point sequence (dc, A,2A,...,6A
and P=17), a minimum of m =35 frequency shifts of the
input signals is needed to ensure that a sufficient number
of equations is obtained to permit solution of all 31
unknowns. However, these equations do not necessarily
form an independent basis. To form a set of 31 linearly
independent equations relating the real unknowns and the
real part of the Fourier coefficients, a total of m=6
translations is needed. This gives a selection of 42 equa-
tions, from which 31 linearly independent equations must
be chosen. An additional set of 30 equations is then
selected to relate the imaginary components. The imagin-
ary set contains one less equation than the set needed to
solve for the real parts because the dc component has no
imaginary part.

Other solutions exist to de-embed the aliasing. The
example above uses a bandwidth of 6.5A and calculates the
Fourier coefficients from a sequence of 13 time samples
sampled at a bandpass rate. An alternative approach would
be to open the band window of interest beyond 6.5A so
that fewer than six frequency translations would be re-
quired (i.e., increase P and reduce m). This would open up
more vacant slots and simplify the aliasing, but would
require more time samples for the DFT and be less compu-
tationally efficient. Alternatively, certain symmetry prop-
erties could be applied. If the two input signals were
always of equal level, the intermodulation products and
harmonics would also be of the same amplitude, and the
number of unknowns would be reduced by half [9]. This
approach was rejected here to enable the two input signals
to be of any (differing) arbitrary magnitude.

IV. IMPLEMENTATION OF THE MODIFIED HARMONIC

BALANCE PROCEDURE

Several modifications are needed in the standard
harmonic balance software to allow for the additional
frequency shifts required to de-embed the aliased ampli-
tudes. No changes are needed in the DFT algorithm which
performs the time-sample-to-frequency conversion, but the
algorithm to perform the phasor (frequency)-to-time con-
version must be altered to account for the different
frequency translations. During each iteration of the
harmonic balance loop, step 3) must now incorporate the
six frequency translations to calculate the six sets of time
samples sampled at a bandpass rate. Step 5) must perform
a DFT on each set to calculate the Fourier ‘coefficients,
and finally perform the inverse matrix multiplication to
de-embed the desired phasor current components. The
error function in step 6) is then calculated as an amplitude
error sum based on the frequency components that are
considered predominant. In the FET examples that follow,
11 components (out of a total of 31) were included: the dc,
fundamentals, second harmonics, third harmonics, and the
third-~ and fifth-order intermodulation products. The mini-
mization is attempted by adjusting their values accord-
ingly. Looping back to step 2), the updated current esti-
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mates are reapplied to the linear circuit to calculate new
phasor voltages (at the 11 predominant frequencies) to
reimpress upon the model. The effect of additional higher
order frequency products resulting from the multiple-
frequency input is neglected.

The efficiency of the MHB technique is impressive. Six
sets of frequency translation requiring 13 time samples
each are needed; i.e., 78 calculations are required of the
nonlinear model to de-embed all 31 frequency compo-
nents. This is an improvement of several orders of magni-
tude over the brute-force Byquist method, which for f; =10
GHz and A=1 MHz would have required 30 000 time
samples to achieve the same result.

A. Limitations of the Technique

The MHB technique is the first reported application of
the harmonic balance method which is able to analyze
nonharmonically related signal excitations in a nonlinear
circuit of potentially any complexity [8]. Although other
solutions have since emerged [10], this method remains the
simplest for the analysis of intermodulation distortion,
resistive mixers, and small-signal gain suppression in non-
linear systems.

The method was implemented assuming a nonlinearity
of fifth order or less. Higher order frequency products will
cause aliasing that has not been accounted for and will not
be de-embedded. This occurs at larger signal strengths, at
which the higher order nonlinearities become significant.
In theory, de-embedding could be achieved for any desired
nonlinearity by increasing the band window. Fortunately,
signal strengths at which unaccounted for aliasing becomes
a problem can be detected by output asymmetry when a
symmetrical input waveform (one which has two equal
level tones) is applied.

The principal limitation of the method is that the device
must be low-Q, so that the frequency translation does not
affect the magnitude of the frequency component that we
seek. The frequency translation affects only the nonlinear
circuit and not the linear one. This poses no problem if the
nonlinearity is purely resistive, or if any frequency-depen-
dent elements in the model can be linearized and parti-
tioned into the linear circuit. However, for reactive nonlin-
carities, the small frequency translation can produce minute
changes in the signal amplitude. Unfortunately, these
changes are comparable to the level of many of the compo-
nents we are seeking to de-embed (e.g., the intermodula-
tion products). This phenomenon predominates at ex-
tremely low signal levels when numerical resolution is
poor, and can also be detected by asymmetry in the output
spectrum produced by two equal-level input signals. The
effect is eliminated by choosing an extremely narrow sig-
nal spacing relative to the carrier frequency. In the calcula-
tion of intermodulation distortion and gain suppression,
this is not a major problem, as the intermodulation prod-
ucts have been experimentally observed to be independent
of frequency separation [11]. Other intermodulation
analyses such as analytical methods [12], [13] or Volterra
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series [14] also neglect the frequency dependence of the
signal separation.

B. Testing the Modified Harmonic Balance Method

The MHB method was implemented in FORTRAN on
an IBM AT Personal Computer. The required memory for
the algorithm was 120K, with an additional 70K needed
when compiled with the physical FET model reported by
Madjar and Rosenbaum [15]. Run time was approximately
2 min for each solution. This is the first report of a
harmonic balance technique implemented on a desktop
person-
al computer. The strength of this implementation is that
it allows complete nonlinear, steady-state analysis of cir-
cuit—device interactions at a computer workstation.

The most useful check of nonlinear performance is to
apply an input signal of the form

V= (acos2af,t + bsin2nf,t)
to a fifth-order nonlinearity such as

I=VAVI+V3+V4+ V5

and solve for the frequency components of I. The use of
two unequal signals levels a and b forces asymmetry in the
spectrum, and the use of cosine and sine terms checks both
the real and imaginary de-embedding. Analytical substitu-
tion of V into the expression for I is surprisingly complex.
For instance, the dc component equals

3a* 3b* a’+b? 34’

—+—+ +
8 8 2 2
while the intermodulation component at (2w, — w,) varies
sinusoidally with magnitude

13 3 3
o Za(a? + )+ 23,7 g2
2[441 b(a*+b?) ab(a+4a +2ab)

a’ 3 3 3 1 3
2 3 2.3 4 23

+ 3 (b+2a b+4b )+4ab +4a b+8ab].
Convergence was obtained very quickly in the test cases
because all the parasitics in the external circuit were re-
moved. A value of p=0.9 reduces the error function by
1072 each iteration. Computed values were as expected,
with relative errors in each component less than 10~°.

V. EXxaMPLES OF NONLINEAR CIRCUIT DESIGN

Several examples illustrating the usefulness of the
method are presented below.

A. FET Frequency Doubler Design

FET frequency doublers are important components in
microwave receivers. Wide-band doublers minimize local
oscillator requirements in phase-locked loops and tracking
systems because they provide a simple means of generating
higher frequency components.

Several design techniques for frequency doublers have
previously been reported [16]-[19]. The design presented
here uses single-gate MESFET’s and standard MIC
techniques, and uses the nonlinearity of the FET transcon-
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ductance to achieve doubling. The circuit inherently rejects
the fundamental and odd-order harmonics over band-
widths greater than an octave. The bandwidth of the
doubler is limited only by the bandwidth of the Lange
couplers used at the FET input and output.

One difficulty in designing a doubler covering octave or
greater bandwidths is that the highest frequency in the
band to be doubled will overlap with the desired (second-
harmonic) output of a lower frequency input. Conse-
quently, the traditional approach of tuning the FET input
to the fundamental frequency and tuning the FET output
to the second-harmonic frequency will result in compro-
mised performance at the bandedges.

The second design difficulty lies in optnmzmg the FET
operating point to achieve maximum conversion efficiency,
i.e., to optimize circuit interaction with the device nonlin-
earity. Tradeoffs between FET gain and harmonic conver-
sion efficiency are difficult to characterize.

This example describes how the nonlinear design tech-
nique can be used to synthesize the desired circuit and to
set the device bias and RF operating point, and illustrates
the circuit approach used to obtain inherently broad-band
operation. Two considerations are accounted for in the
design approach; the first is that conversion loss be as low
as possible, and the second is that the fundamental signal
be rejected. Using conventional approaches, that is par-
ticularly hard to achieve for a 4-8-GHz doubler at § GHz,
as this frequency is both the doubled 4-GHz signal and a
possible fundamental input.

The input and output circuits of the basic FET doubler
stage were synthesized for maximum flat gain across the
whole band using standard small-signal techniques. The

circuits can then be verified at small-signal levels with the

nonlinear algorithm and model. Unlike conventional
single-frequency doublers, however, the wide-band input
and output matching circuits must be low-Q to maximize
bandwidth. The FET’s used were NE71000.

The circuit topology for the nonlinear element chosen is
shown in Fig. 5. Using the MHB program with only a
single input frequency, the (small-signal-derived) matched

1301

COMPUTER SIMULATIONS

20

/é Vgg= -05V o
T
me FUNDAMENTAL -
A s ’
w //// .
[
Zo ~
IS -
[s9) ,/”‘/
| AELe ..
° SECOND HARMONIC
a7 -
[ s
5
o [
[a¥]
i
T T
5 0 5 10

INCIDENT POWER (dBim)
@

COMPUTER SIMULATIONS

20

—_ Vg = -1V
=
m e s
= /
E FUNDAMENTAL
= o
= / /
o - e
- //

,[—,4 [} re e
et o
a, ! L7
= 7" SECOND BARMONIC
) L
O 5 .

o

! T T

3 0 5 10
INCIDENT POWER (dBin)
(®)

Fig. 6. Modeled results of the nonlinear FET element of Fig.-5. Simula-
tions of fundamental and second harmonic output power are showr as a
function of fundamental input power at (a) Vgg=—05 V and (b)
Vis = —1.0 V. Drain—source voltage was 4 V.

FET stage was analyzed for doubling efficiency at various
device bias and RF drive points. The model used has been
previously reported [20], and contains a three-terminal
nonlinear capacitance in addition to nonlinearities in g,
and g,. Optimum conversion efficiency was obtained by
setting the device bias near pinchoff, using an RF-bypassed
50-Q resistance in the source. Biased in this fashion, the
FET behaves as a harmonic generator. Modeled simula-
tions of fundamental and second-harmonic output power
at 8-GHz input are shown in Fig. 6. By varying the source
resistor, the gate—source bias voltage can be changed.
From the figure, optimum second-harmonic to fundamen-
tal output power is achieved with a gate bias of —1 V and
an incident power around 5 dBm.

1) Circuit Topology: Although optimized for second
harmonic generation, the level of the fundamental fre-
quency at the single-stage FET output is still approxi-
mately 10 dB greater than the desired second harmonic.
The single-stage doubler just described has no rejection,
because rejection would result in poor conversion perfor-
mance at the lower edge of the output band (which corre-
sponds to the upper edge of the input band in an octave
bandwidth design). In this application, the FET is used
solely as a nonlinear element for generation of a second
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3dB 3dB 3dB 3dB

Fig. 7. Construction of the broad-band doubler. The initial block com-
prises a pair of nonlinear FET harmonic generators coupled by two
antisymmetric Lange couplers to provide a 180° path difference. The
final block is a balanced bandpass amplifier that uses symmetrically
coupled Lange couplers to provide zero net phase difference. -

Fig. 8. Photograph of the broad-band doubler. The input is in the lower

left corner of the figure.

harmonic and behaves like a half-wave rectifier. Any stable
device with sufficient microwave gain could be used in
place of the FET. For example, Schottky diodes could be
substituted for the FET’s in order to generate a second-
harmonic signal.

Fundamental frequency rejection is achieved by two
means.

The first involves coupling two FET half-wave rectifiers
antisymmetrically, so that conduction occurs on alternate
half-cycles, as illustrated in Fig. 7. Two Lange couplers,
oriented to provide a total path difference of 180°, are
ideal for this purpose, as they allow isolation between the
two half-circuits and provide good input and output VSWR
over the necessary bandwidth, in addition to the required
phase difference. The antisymmetric configuration effec-
tively nulls out the fundamental and odd-order harmonics,
because the 180° phase shift difference results in pure
cancellation (subtraction) of the odd-order frequencies.

The other way of achieving fundamental frequency re-
jection is by adding a following band-reject amplifier.
Additional cancellation of the fundamental is achieved in
this balanced amplifier stage, as its Lange couplers are
designed for the midrange of the output band and reject
the input band. In addition, the amplifier itself provides
gain at the second harmonic and rejection at the funda-
mental. Conventional small-signal techniques were used to
synthesize this stage.
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Fig. 9. Measured doubler results, showing the (a) fundamental and
(b) second-harmonic output power as a function of frequency, for
input power levels of —5, 0, and +5 dBm.

1) Results: The circuit in Fig. 7 was fabricated on a
0.015-in alumina substrate and used Lange couplers
centered at 12 GHz. The complete doubler is shown in Fig,
8. Circuit size was 0.5 in. by 0.25 in. and power consump-
tion was 60 mA at 4 V input.

Measured doubler results are illustrated in Fig. 9. Input
drive level of +5 dBm was found to give the highest
conversion efficiency, close to that determined in the simu-
lations. The second-harmonic output power was tuned to
rise slightly over the band to compensate for following
system losses. At 16 GHz, a peak output power of +4
dBm was achieved, for a total conversion loss of 1 dB.
Rejection at the fundamental frequency was 20 dB. Maxi-
mum conversion loss of 6 dB was obtained at 8§ GHz, with
fundamental frequency rejection of 15 dB. Fundamental
rejection was highest around 7 GHz due to a perfect phase
and amplitude balance in the input and output Lange
couplers at this frequency. '

B. Reduction of Intermodulation Distortion in a
Power Amplifier

Intermodulation distortion is an undesirable effect in
communications amplifiers because it introduces a form of
crosstalk into the channel, as band-limited signals can
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Fig. 10. Linear amplifier topology used in the MHB: simulations for
reduction of intermodulation distortion.

interact with any odd-order nonlinearity to produce ad-
ditional frequency components that fall within the band.
The new components are known as intermodulation prod-
ucts, and limit the level at which linear amplifiers can
operate. As input power is increased, the stronger nonlin-
earities in the transfer characteristic of the amplifier be-
come significant and produce spectral components that
can interfere with the desired signal.

One of the principal advantages of the MHB method is
its- ability to predict the effect of circuit—device interac-
tions on the level of the third-(and higher)-order intermod-
ulation products. A two-tone intermodulation test is able
to identify amplifier nonhnearity far more easily and accu-
rately than simple one-tone tests of compression and
AM/PM, in which small deviations from linear gain or
phase must be observed. The typical two-tone test uses
apparatus similar to that shown in Fig. 2, where two
closely spaced signals of equal level are impressed upon
the device input. The level of the fundamental and inter-
modulation products are observed as a function of input
power to give a measure of the system nonlinearity.

Intermodulation distortion can be reduced by careful
design techniques. Many of these may be investigated with

the MHB technique. For instance, in an FET amplifier, -

5-dB reduction of the third-order intermodulation product
may be achieved by simply ensuring that the second-
harmonic terminating impedance at the gate is a short
circuit. This prevents any second-harmonic voltage being
reimpressed upon the FET and mixing with a fundamental
input to produce an in-band distortion product. Other
means that have previously been investigated [20] include
raising. the drain voltage or introducing some feedback
resistance. ‘

A novel scheme was discovered during simulations with
the model. Fig. 10 illustrates the concept. Amplifier 4, is a
matched FET amplifier driven simultaneously by applied
voltages V; and V,, where V, is a voltage injected into the
FET drain. Simulations of this configuration were run
using the MHB approach. (Note that for intermodulation
simulations, both the signals V; and V, actually consist of
two tones each.) An increase in the output power resulted.
Even though the FET inverts voltage ¥; at the drain so
that if V, is of similar phase to V; the total RF drain-volt-
age swing is reduced, the current is increased and the
phase angle between the voltage and current at the output
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Fig. 11. (a) Single-tone simulation of linear amplifier response as a
function of input power showing fundamental output power for ¥, =0
(solid) and ¥, =¥, (dashed). (b) Two-tone simulation of linear ampli-
fier response and third-order intermodulation-distortion product as a
function of input power. Amplifier topology is shown in Fig. 10. The
solid curve shows response for ¥, = 0; the dashed curve for V, = 1.

is reduced, so that the net output power actually increases.
Additionally, the reduction in output voltage swing re-
duces the level of the third-order intermodulation distor-
tion. The voltage reduction is associated with the reactive
part of the load trajectory; the overall effect is similar to~
an active load-pull, where the added voltage ¥, provides a
form of dynamic tuning at the output in such a way as to
reduce distortion. ' '
Computer simulations are shown in Fig. 11 for a low-
power prototype -amplifier that used FET’s with a gate
width of 400 pm. Both V; and V, were set equal in

‘amplitude and phase in the simulations used to derive Fig.

11(a) and (b), which are one-tone and two-tone power
curves respectively. The uppermost curve (dashed) in each
graph is the fundamental output power in the new system.
The solid curve indicates, for comparison, the modeled
response of the original system with V, =0. As can be
seen, the distortion reduction effect occurs at high power
levels, where the distortion products are reduced by up to
10 dB. Furthermore, because of the increased output power,
the ratio of output power to intermodulation distortion
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Fig. 12. Discrete implementation of the linear amplifier of Fig. 10.

(C/I) is considerably increased. At an output power of 5
dBm, for example, the ratio has improved from 39 dB to
45 dB. At higher power levels, where the third-order prod-
uct begins to reduce, the improvement is substantially
greater. .

The implementation of this scheme is very difficult using
discrete parts, and could be attempted more simply mono-

lithically. A discrete implementation is shown in Fig. 12.
" There, the signal V; is generated by coupling some of the
input signal V| into a secondary linear amplifier 4,, and
injecting the new signal into the output of the original
amplifier A4,. It is important to note that this is not a
feedforward scheme, where amplifier 4, would be nonlin-
ear and used to generate distortion components that are
subtracted from those produced by 4,. In this case, a
linear in-phase reproduction of the input signal (assumed
pure) is added to the output voltage produced by the FET.
In order to add the voltage V, in series with the drain
output, a circulator was used. The resultant combined
voltage is then circulated to the output load. To match the
simulations, this would require that 4, have zero source
impedance and produce an internal voltage swing of V,
equal to V}. Since the outputs of both 4, and A4, were
internally matched to 50 {, the voltage added by 4, was
actually V, /2 if V, is the internal output voltage of 4,. In
a monolithic implementation, A, could be designed with
low output impedance and act as a voltage source to 4, to
overcome this difficulty.

In its practical implementation, an NEC NEZ5964-6
6-W power FET was driven as part of a 50-dB- gain
amplifier chain. To supply the injected RF drain voltage,
an 8-dB branch-line coupler and an NEC NEZ5964-3 3-W
device were used as amplifier 4,. Fig. 13(a) shows the
measured intermodulation distortion spectrum of A4, alone
driven with two signals of +34 dBm each at the output.
Fig. 13(b) shows the spectrum when A, is added; third-
order products are reduced by 8 dB and fifth-order prod-
ucts by over 20 dB. Simple power combining of the NEZ-3
with the NEZ-6 would theoretically reduce the third-order
products alone by only 3.5 dB. Relatively narrow band-
widths (100 MHz) were achieved because of the discrete,
internally matched components used.

The phase of ¥, relative to V; can be varied through any
phase angle in the simulations. As it is rotated through 90°
to 180°, the opposite effects are observed: lower output
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Fig. 13. Measured intermodulation spectrum of a 6-W power amplifier
with two output signals of +34 dBm each at the output. (a) Without
signal injection at the drain. (b) With signal injection at the drain,
Vertical scale is 10 dB per division.

power, higher distortion products, and severely de-
teriorated power-to-distortion ratio. Experimentally, phase
tuning was achieved by using a variable-length microstrip
line at the output of A4,.

In a typical power-combined amplifier using a 3-dB
hybrid at its output, the output powers of two identical
FET’s are combined to increase output power. Conse-
quently, a 3-dB improvement in intercept point is achieved,
with a theoretical improvement in C/I of 6 dB due to the
back-off possible in operating with lower output power.
The scheme presented here also employs a type of power
combining, but the FET’s need no longer be of equal
power-handling capability. For the additional cost of a
coupler and a circulator, considerably greater improve-
ment in C/I can be achieved compared to power combin-
ing amplifiers, due to the improved linearity obtained by
using vectorial addition of the output voltages to dynami-
cally tune the FET. Such a scheme could be more efficient
than either present predistorter or “back-off” approaches.

C. Gain Suppression in Limiting Amplifiers

A phenomenon that has been known for a considerable
time in limiting amplifiers [21], [22] and nonlinear ampli-
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Fig. 15. Same as Fig. 14, but with two applied tones of level Py and
Py —5dB.

fiers [23] is the possible improvement of 3 dB in the output
signal-to-noise ratio of a signal which is much stronger
than the noise. A consequence of this result is that, for
large signal-to-noise ratios, the output power ratio of a
weak signal to a much stronger (simultaneous) signal at a
different frequency in the band can be up to 6 dB less than
the same ratio at the input of the limiter or saturating
amplifier. This is.known as gain suppression of the weaker
signal. The MHB method can be used to demonstrate this
trend by performing an intermodulation analysis in which
the two input tones are of unequal level. The advantages
of this approach over previous analytical treatments of the
phenomenon are that the nonlinearity is a dynamic func-
tion of the instantaneous operating point of the device
(because a device model is used), and that the frequency
components are obtained numerically.
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Fig. 16. Lumped element equivalent circuit model of the FET feedback
amplifier used n the gain-suppression experiments of Figs. 14 and 15.

Figs. 14 and 15 show both simulations and experimental
results for the fundamental output power and third-order
product in each of the two carriers and their sidebands.
The simulations are shown as solid lines; the experiments
as dashed. The amplifier used is illustrated in Fig.. 16; it
comprises an NEC 72083 FET embedded in a resistive
feedback circuit, with a feedback resistor of 500 Q. The
FET was biased at V;3=-025V and V, =3 V, and
driven well into saturation by two tones at the gate of
frequency 2.000 and 2.001 GHz. The horizontal axis in
Figs. 14 and 15 represents the power incident in the
strongest signal. In Fig. 14, the smaller incident signal is 3
dB weaker than this; in Fig. 15, it is 5 dB weaker. In both
cases, the small-signal gain is 9 dB. At an incident power
of +8 dBm for the strongest signal, the amplifier is
compressed, and the stronger signal output power is 14.3
dBm in Fig. 14 and 14.5 dBm in Fig. 15. In Fig. 14, the
output power of the weaker signal (at 5-dBm incident
power) is then just 9 dBm. Similarly, in Fig. 15, the weaker
signal of 3-dBm incident power produces an output power
of just 7 dBm. In both cases, the gain of the small signal
has been suppressed by about 2.5 dB.

The measured behavior of the third-order intermodula-
tion sidebands is also interesting. The difference in levels
between the two third-order products is directly propor-
tional to the level separation between the two input signals
(3 dB and S dB, respectively). The simulations also show
that the separation between the two second-harmonic sig-
nals is twice (in dB) the input signal level separation, and
three times the input level separation for the third-harmonic
outputs.

Agreement between the measured and simulated results
is good. The amplifier used in the simulations was not an
ideal limiting amplifier, but the onset of gain compression
and saturation gave it similar characteristics. Unfor-
tunately, an ideal limiting amplifier has nonlinear terms of
infinite order, and the results obtained by this method
would be in error due to the additional aliasing. By consid- -
ering a “soft limiter,” the MHB technique could be useful
in the design of nonlinear amplifiers tailored for suitable
gain characteristics. A predistorter is an example. The
application of the technique to the analysis and design of
resistive mixers is also straightforward, and is similar to
the example just given.
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A technique that permits the investigation of device—cir-
cuit nonlinearities for two input frequencies has been
presented. Using modifications to an existing FET model
[15], [20], a harmonic balance method was devised which
was efficiently implemented on an IBM PC-AT and which
overcame the problems associated with a small frequency
difference relative to the carrier frequency. By bandpass
sampling the time-domain waveform generated by the FET
model, and by small input frequency changes, the desired
fundamental and intermodulation components can be re-
constructed from the aliased spectrum. By achieving a
harmonic balance between the frequency components
present in the nonlinear model and the linear circuit,
Kirchhoff’s laws are satisfied. This enables the effect of
circuit and device parameter changes to be determined for
both single- and two-tone excitation. The method is
numerically efficient because:

CONCLUSIONS

i) the linear circuit is analyzed by an N-port matrix in
the frequency domain, where differing time constants cor-
respond only to different amplitude phasor components,
and additional branches do not increase the size of the
matrix;

i) the time-domain waveform from the model is sam-
pled not at the Nyquist rate for two closely spaced signals,
but at the bandpass rate; and

iii) the time-domain waveform is obtained as an explicit
function of the input nodal voltages and their time deriva-
tives.

The method in principle allows any nonlinear time-do-
main model to be used. The nonlinearity can be a function
of the instantaneous (unknown) operating point; i.e., it can
account for changing bias conditions. Harmonics and
higher order frequencies generated are reimposed as ad-
ditional inputs to the model, and a solution is obtained for
the phasor value of every frequency component present,
including dc components.

The restrictions on the method as implemented are that
the nonlinearity be no greater than fifth order, and that if
the nonlinearity is frequency-dependent (i.e., nonresistive),
the frequency spacing of the two input signals be much
less than the carrier frequency. The method gives results
identical to the standard harmonic balance method for all
nonlinearities whenever the input level of the second tone
is set to zero.

Three novel examples of nonlinear circuit design have
been presented. The first is of a novel FET frequency
doubler, covering octave bandwidths. The MHB method
was used with a single-tone input to set the device bias and
operating points. The circuit structure is applicable to any
microwave nonlinear device as the active element. Using
single-gate FET’s, conversion efficiencies of from —1 to
—6 dB were obtained across the output frequency band of
8 to 16 GHz. The second was a technique which allows
reduction of third-order intermodulation distortion in a
power amplifier. Implementation using discrete elements
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resulted in an improvement of 8 dB in the C/I ratio of a
power amplifier with two tones at the output of 34 dBm
each. The final example illustrated gain suppression in a
limiting amplifier, and demonstrated the rejection of the
smaller of two signals in an amplifier driven into satura-
tion.
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